

N5106A PXB Baseband Generator and Channel Emulator

Data Sheet

Definitions

Specification (spec): Represents warranted performance. Because this instrument is primarily digital in nature, there are no analog performance specifications.

Typical (typ): Represents characteristic performance that is non-warranted. Describes performance that will be met by a minimum of 80% of all products.

Nominal (nom): Represents characteristic performance that is non-warranted. Represents the value of a parameter that is most likely to occur; the expected mean or average.

Measured (meas): Represents characteristic performance that is non-warranted. Represents the value of a parameter measured during the design phase.

Note: All graphs contain measured data from several units at room temperature (approximately 25 °C) unless otherwise noted.

2

General Characteristics

N5106A PXB baseband generator and channel emulator

Supported use cases and configurations

Use cases	Configurations
Baseband generation ¹	1, 2, 4, 6 channels
Baseband generation and sum ¹	2, 4 channels
Baseband generation and fading ¹	1, 2 channels
Single-user MIMO ^{1,3}	1x2, 2x1, 2x2, 1x4, 2x4, 4x2
Multi-user MIM0 ^{1,3}	2x2, 2x4, 4x2
RF and digital I/Q fading ^{1, 2}	1, 2 channels, 1 channel with interferer
MIMO RF and digital I/Q fading ^{1, 2, 3}	1x2, 2x2, 2x4, 4x2
Signal capture	1 channel
E5515C (8960) fading	1, 2 channels, 1x2, 1 channel with interferer

This use case supports RF output with vector MXG/ESG and digital I/Q output with N5102A.
This use case supports RF input with PXA/MXA/EXA and digital I/Q input with N5102A.
MXGs and ESGs cannot be used together for MIMO configurations.

Baseband Generator Characteristics (requires Option EFP)

Number of baseband generators Up to 6

Signal bandwidth

PXB output interface		Bandwidth	
Analog I/Q output	Analog I/Q outputs ²		120 MHz ³
	N5102A digital signal interface module		120 MHz
Digital bus ⁴	N5162/82A MXG ve	ector signal generators ⁵	100 MHz
E4438C ESG vector		signal generators ⁶	80 MHz
Arbitrary wavef	orm memory	512 Msa (2 GB) per base 1 kSa/sec - 150 MSa/se	
Resolution		14 bits ⁷	
Baseband freque	ency offset range	–60 MHz to 60 MHz ⁸	
Compatible sign	al formats	Signal Studio, E4438C, N Advanced Design Systen SystemVue 2008, custon	n (ADS),
Numeric format	S	Two's complement, offse	et binary

256 samples to 512 Msa

memory: 20 MB/s (nom)

waveform header RMS

LAN to PXB hard drive: 4 MB/s (nom) PXB hard drive to arbitrary waveform

External eSATA hard drive to PXB arbitrary waveform memory: 20 MB/s (nom)

Measured, previous RMS, user entered,

When connected to the MXG/ESG via the digital bus, the PXB has negligible contribution to RF flatness, EVM, and ACP. See MXG/ESG data sheet for performance details.

Waveform length

Waveform loading speed¹⁰

RMS values for power control

5. Requires MXG firmware revision A.01.44 or later.

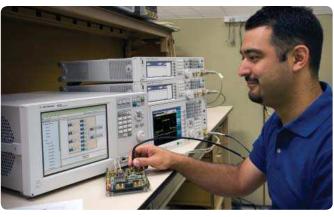
^{1.} Each baseband generator can individually set sample rate.

The PXB connected to the E4438C ESG via analog I/Q provides automatic power calibration at RF up to 120 MHz. RF power management when connected via the PXB's analog I/Q outputs to all other signal generators requires manual power calibration.

^{3. 60} MHz I and 60 MHz Q.

^{4.} When the PXB output is connected via digital bus to the MXG/ESG, bandwidth is limited by the vector signal generator.

^{6.} Requires ESG firmware revision C.05.23 or later. Contact division for demo firmware.


 ¹⁶⁻bit I/Q waveforms created for the E4438C and N5162/82A are compatible with the PXB. For optimal performance, PXB waveforms should be created with 16-bit resolution. Refer to the online documentation for more information.

^{8.} Baseband offset range is limited by output instrument when connected via digital bus.

^{9.} Users load waveforms into the PXB baseband generator for playback. See online documentation for details on custom waveform format.

^{10.} Performance varies depending on external PC and LAN connection.

Fader Characteristics (requires Option QFP)

Simulate real-world conditions to test mulit-format receivers more quickly and validate design robustness earlier in the development cycle with the PXB.

Up to 8

Number of faders

Fading bandwidth

Internal base	band generation and fading	Maximum bandwidth	
Analog I/Q ou	ıtputs ¹	120 MHz ²	
	N5102A digital signal interface module	120 MHz	
Digital bus ³	N5162/82A MXG vector signal generators ⁴	100 MHz	
	E4438C ESG vector signal generators ⁵	80 MHz	
External RF i	nput for fading	Maximum bandwidth	
	N9010A EXA ⁷ , N9020A MXA ⁷ , and N9030A PXA ⁸ vector signal analyzer	40 MHz ¹¹	
Digital bus ⁶	N5102A digital signal interface module	120 MHz	
	E5515C (8960) wireless communications test set ⁹	Standard dependent ¹⁰	
RF input	-40 dBm to 15 dBm with MXA		
RF output	-115 dBm to 0 dBm with MXG -115 dBm to -10 dBm with ESG		
Paths per fader6 paths @ 120 MHz12 paths @ 80 MHz24 paths @ 40 MHz			
Power accurac	has negligible contribution to power accurac parison to the signal generators set to the sa	When connected to the MXG/ESG via the digital bus, the PXB has negligible contribution to power accuracy. This is in com parison to the signal generators set to the same conditions separately. See MXG/ESG data sheet for performance details.	

The PXB connected to the E4438C ESG via analog I/ Ω provides accurate power calibration at RF up to 120 MHz. RF power management when connected via the PXB's analog I/ Ω outputs to all other signal generators requires external power calibration. 1. 60 MHz I and 60 MHz Q. 2

- Requires E5515C-004 and the relevant Lab Application(s). Review online documentation or the configuration guide for Lab Application 9. revision requirements.
- EGPRS2-A and downlink dual carrier GSM requires RF fading. Requires Option B25 for 25 MHz or B40 for 40 MHz bandwidth 10.

11.

When the PXB output is connected via digital bus to the MXG/ESG, bandwidth is limited by the vector signal generator. 3.

^{4.} Requires MXG firmware revision A.01.44 or later.

^{5.} Requires ESG firmware revision C.05.23 or later. 6.

When the PXB input is connected via digital bus to the PXA/MXA/EXA, fading bandwidth is limited by the vector signal analyzer. Requires MXA firmware revision A.01.61 or later, EXA firmware revision A.04.26 or later.

^{7.}

Requires PXA firmware revision A.06.06 or later. 8.

Fader Characteristics (requires Option QFP)

continued...

Predefined channel models	W-CDMA, HSDPA, HSUPA, COST 259, TD-SCDMA, cdma2000, cdmaOne, 1xEV-DO, GSM, EDGE, WLAN, TETRA, 802.16 OFDM, 802.16 OFDMA, LTE (includes high speed train), MBRAI models for DVB-T and DVB-H
Predefined MIMO channel models ²	LTE: 3GPP standard 36.101 Annex B,modified SCME urban micro-cell, SCME urban micro-cell, SCME urban macro-cell, WINNER II, single cluster EPA, single cluster SCME, 2D uniform (requires Option TFP) Mobile WiMAX™: channel model for MTG RCT (requires Option RFP)
Repetition interval	> 7 days
Random seed	89 bits
Fading types	Pure Doppler, Rayleigh, Rician, Suzuki, log normal
Spectral shape	Classical 3 dB, classical 6 dB, flat, rounded, Jakes classical, Jakes rounded, Gaussian
Rayleigh distribution	0.5 dB from –30 to + 10 dB of mean power level Deviation from CDF, filtered noise
Rician	
Power ratio (k) range LOS AoA	84 dB to 84 dB 0 to 360°
Path delay Resolution	0 to 2 ms 0.1 ns
Accuracy	$\pm(0.4 \text{ ns} + 0.2\% \text{ path delay}) \text{ (meas)}$
Phase shift Resolution	0 to 360° 0.01°
Path loss Resolution Accuracy	0 to 84 dB 0.01 dB 0.1 dB (meas)
Vehicle speed ¹ Resolution	0 to 864 km/h @ 2 GHz 0.01 km/h
Doppler frequency ¹ Resolution Accuracy	0 Hz to 1.6 kHz 0.001 Hz 0.05% (meas)
Angle of arrival (AoA) Resolution	0 to 360° 0.01°
Angle of departure (AoD) Resolution	0 to 360° 0.01°
AoA Azimuth spread Resolution	0 to 360° 0.01°
AoD Azimuth spread Resolution	0 to 360° 0.01°
Log normal Standard deviation Decorrelation length	0 to 12 dB 1 m to 1 km
MIMO correlation source	From wireless standard, from custom antenna setup, from custom correlation matrix
Custom correlation matrix	Channel to channel, path to path
Path configuration source	From wireless standard, custom
Antenna patterns	Omni-directional, three-sector, six-sector, uncorrelated, user specified (2D and 3D antenna models from EmPro or equivalent)
Antenna spacing	-20 to 20 wavelengths in X and Y coordinates

Doppler frequency of vehicle speed is coupled to the carrier frequency setting in the Fader Setup view.
Implemented as filtered noise.

Dynamic fading

Number of dynamic paths Up to 24 Number of states¹ 1 to 5000 **Requested dwell time**² 10 ms to 1000s Resolution 10 ms Path loss 0 to 84 dB Resolution 0.01 dB Path delay 0 to 2 ms Resolution 0.1 ns 0 to 1726.8/carrier frequency in km/hr Path UE speed Resolution 0.01 km/hr

Signal Capture Characteristics (requires Option FFP)

Number of	channels	
-----------	----------	--

Signal capture bandwidth

PXB input in	terface	Maximum bandwidth
	N5102A digital signal interface module	120 MHz
Digital bus ³	N9010A EXA, N9020A MXA, and N9030A PXA vector signal analyzer	40 MHz ⁷

Up to 1

Signal capture sample rate ⁴ Signal capture depth ⁴ Signal capture duration ⁴ Resolution Trigger type Trigger value ⁵ Trigger time delay ⁶ Trigger sample delay Trigger position	1 kSa/sec - 150 MSa/sec 256 samples to 512 Msa (2 GB) per channel Signal capture depth / sample rate 14 bits Free run, master trigger, magnitude 0 to 46340 0 to 2147483.647 seconds 0 to 2147483647 samples 0 to 100%
AWGN bandwidth	Up to 120 MHz
Signal to noise (S/N) ratio Resolution Accuracy	-20 dB to +40 dB 0.1 dB 0.3 dB (meas)
Crest factor	12.88 dB
Units Optimization Output MUX	SNR, Eb/No Constant signal power, constant noise power, constant SNR Signal + noise, signal only, noise only

Additive White Gaussian Noise (AWGN) Characteristics (requires Option JFP)

1. States are defined in ${\sf Microsoft}^{\circledast}$ Excel. The Excel template is included with the firmware installation.

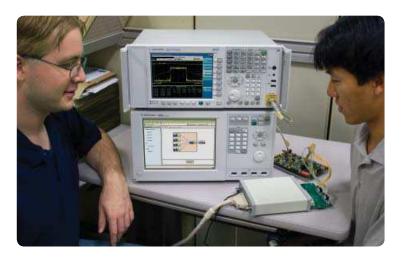
2. Actual dwell time is calculated based on requested dwell time and UE speed. Refer to the help system for details.

>7 days

3. When the PXB input is connected via digital bus, signal capture bandwidth is limited by the input device.

4. Each signal capture channel supports an independent sample rate, depth, and duration.

5. For magnitude trigger only.


7.

Repetition interval

Trigger time delay is variable, based on sample rate. It is the trigger sample delay/sample rate.

Requires Option B25 for 25 MHz or B40 for 40 MHz bandwidth.

Digital I/O **Characteristics**

Test baseband chipsets with the PXB and the N5102A digital signal interface module.

Logic types (requires N5102A) ¹	Single-ended: LVTTL, CMOS (1.5V, 1.8V, 2.5V, 3.3.V) Differential: LVDS
Number of I/O ports ²	2 per I/O card, up to 8 total ³
Resolution	14 bits
Baseband frequency offset	-60 MHz to 60 MHz ⁴
I/Q skew	–2 ns to 2 ns
Resolution	1 ps
l/Q gain balance	-4 dB to 4 dB
Resolution	0.01 dB
Delay	0 to 500 ns
Resolution	1 ps
Quadrature skew	–30 to 30°
Resolution	0.01°

^{1.} Logic types available when connected to N5102A digital signal interface module.

Logic types available when connected to No102A digital signal interface inducte.
Each output port must be designated as analog or digital in the PXB user interface. The same port cannot be used for both simultaneously.
Current configurations only support up to 6 outputs.
Baseband offset range is limited by output instrument when connected via digital bus.

Analog Output Characteristics

Port type Number of analog I/Q ports¹ Level **50** Ω 14 bits Resolution **Baseband frequency offset** I/Q skew Resolution 1 ps I/Q gain balance 0.01 dB Resolution Delay Resolution 1 ps Quadrature skew 0.01° Resolution Common I/Q offset Resolution 10 mV **Differential I offset** Resolution 1 mV **Differential Q offset** Resolution 1 mV I/Q peak level Resolution 10 mV

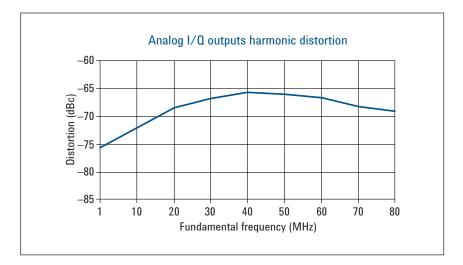
Analog I/Q, single-ended and differential 2 per I/O card, up to 8 total² 1.0 Vpp single-ended, 2.0 Vpp differential; 50 Ω 14 bits -60 MHz to 60 MHz³ -2 ns to 2 ns 1 ps -4 dB to 4 dB 0.01 dB 0 to 500 ns 1 ps -30 to 30° 0.01° -2.5 V to 2.5 V 10 mV -25 mV to 25 mV 1 mV -25 mV to 25 mV 1 mV 0 V to 1 Vpk

^{1.} Each output port must be designated as analog or digital in the PXB user interface. The same port cannot be used for both simultaneously.

^{2.} Current configurations only support up to 6 outputs.

^{3.} Baseband offset range is limited by output instrument when connected via digital bus.

Analog Output Characteristics

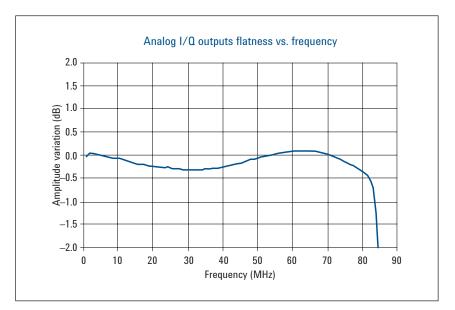

continued...

Maximum reverse power

Flatness¹

Max DC voltage 20 VDC (nom) 250 kHz to 500 MHz 1 W (nom) 1 dB (typ) < -76 dBc (typ)

Spurious free dynamic range¹ Harmonics¹


Phase noise¹ –147 dBc/Hz (typ)

10 MHz sinewave at 10 kHz offset

Noise floor¹ –152 dBc/Hz (typ)

10 MHz sinewave at 1.9 MHz offset

Flatness¹

These values apply at the PXB analog I/Q outputs only. When connected to the MXG/ESG via the digital bus, the PXB has negligible contribution. See MXG/ESG data sheet for performance data.

Frequency Reference Characteristics

Internal time base reference

External reference input

Reference output

OCXO, 10 MHz, stability ± 0.01 ppm, from +20 to +30 °C Aging ± 0.1 ppm/year for the first year Aging ± 0.15 ppm/year for the first 2 years Operating temperature range is from 0-40 °C 1 MHz - 100 MHz, -5 to + 10 dBm; 50 Ω 10 MHz, 0.9 Vpp $\pm 10\%$; 50 Ω

Clock, Trigger, and Marker Characteristics

Channel synchronization	< 21 ns
Trigger source	Software, hardware, bus (GPIB, LAN)
External trigger in	3.3 V CMOS (nom)
Trigger delay	0 to 100 ms
Trigger jitter	5 ns
Trigger to analog I/Q out latency	250 ns (nom)
Trigger to RF latency	N5182A MXG: 600 ns (nom) E4438C ESG: 1.3 us (nom)
N5102A latency ¹	
Input	500 ns @ 100 MHz sample rate, 60 us @ 1 MHz
Output	400 ns @ 100 MHz sample rate, 25 us @ 1 MHz
RF to RF latency ^{2, 3}	N5182A MXG through digital bus: 33 us (nom) N5182A MXG through analog I/Q: 22 us (nom) E4438C ESG through digital bus: 27 us (nom) E4438C ESG through analog I/Q: 22 us (nom)
Marker outputs ⁴	3 markers per I/O port 3.3V CMOS (nom)
Marker source	Separate marker file, markers embedded in waveform, dynamic marker generation
Marker delay	0 to 1,024 samples (settable in time)
Marker polarity	Positive, negative

^{1.} Does not include PXB and RF latency.

^{2.} Latency is measured from the signal analyzer's RF input to the signal generator's RF output.

^{3.} Power calibration not performed when connecting the PXB to the MXG through analog I/Q.

^{4.} Markers are labeled 1, 3, and 4. Marker 2 is reserved for internal use only.

General Chassis Characteristics

Dynamic marker type	Periodic, range detect, zero detect
0\$	Windows [®] XP Professional
Programming language	SCPI ¹
Connectivity	Gigabit LAN, IEEE 488 GPIB
Non-volatile storage	160 GB hard drive total 90 GB available for waveform and user data on D: partition (supplemented by external USB drives)
Available chassis slots	Up to 6 baseband cards (or 12 DSP blocks) and up to 4 I/O cards
Power requirements	100 to 120 VAC 50 to 60 Hz, or 200 to 240 VAC 50 to 60 Hz (automatically selected); < 875W typical, 1075W maximum
Operating temperature	10 to 40 °C
Acoustic noise	ldle: 57 dBA (nom) Normal: 60 dBA (nom) Worst case: 70 dBA (nom) Typical Agilent equipment: Normal = 54 dBA (nom)
Weight	Fully loaded: < 33 kg (72 lb)

PXB rear panel view.

Dimensions

222 mm H x 426 mm W x 584 mm D (8.75 in H x 16.8 in W x 23 in D)

1. Does not apply to Signal Studio programming control.

General Chassis Characteristics

continued...

System clock rear panel connectors

EXT I/O CLK IN	Reserved for future use
EXT SYNC	Reserved for future use
EXT TRIG IN	External trigger signal used to trigger the start of the FPGA process 3.3V CMOS [male SMB] Damage level: < 0 V and > 3.3 V
EXT REF IN	Input for an external frequency reference signal 1 MHz to 100 MHz, -5 to + 10 dBm; 50 Ω [male SMB] Lock range: ±5 ppm Damage level: < 0 V and > 3.3 V
10 MHz OUT	10 MHz reference output used to lock the frequency reference of other test equipment to the PXB 900 mVpp; 50 Ω [male SMB] Damage level: < 0 V and > 3.3 V
100 MHz SYS CLK OUT	100 MHz system clock output 2 Vpp; 50 Ω [male SMB] Damage level: < 0 V and > 3.3 V
I/O CLK OUT	Reserved for future use
TRIGGER OUT	Routed from hardware or software trigger input TTL; 100 Ω [male SMB] Damage level: < 0.5 V and > 5.5 V
AUX I/O	Provides additional digital signal interface and feedback 3.3 V CMOS [male 20 pin mini delta] Damage level: < 0 V and > 3.3 V

CPU host controller rear panel connectors

MONITOR USB SLAVE (top)	VGA connection of an external monitor Standard USB 2.0 ports, Type A connect to external peripherals such as a mouse, keyboard, printer, DVD drive, or hard drive
USB MASTER (top)	USB 2.0 port, Type B USB TMC (test and measurement class) connects to an external PC controller to control the PXB and for data transfers over a 480 Mbps link
LAN	Network interface used to control the PXB remotely

General Chassis Characteristics

continued...

CPU host controller rear panel connectors

continued...

GPIB	A General Purpose Interface Bus (IEEE 488 GPIB) connection that can be used for remote operation
INTERCONNECT 1 & 2	Reserved for future use
eSATA	This port provides access to external eSATA Hard Disk Drive (HDD) storage devices to increase system file storage capacity with higher transfer rates than the USB port
PCIe x4 FROM UPSTREAM	Reserved for future use
PCIe x4 TO DOWNSTREAM	Reserved for future use
USB (bottom)	Reserved for future use

I/O card(s) rear connectors

CLOCK IN TRG IN MKR OUT	Reserved for future use Reserved for future use Marker outputs for each I/O board channel numbered 1, 3 and 4 (marker 2 is reserved for internal use) 3.3 V CMOS [male SMB] Damage level: < 0 V and > 3.3 V
CLOCK OUT	Reserved for future use
DIGITAL BUS	Digital bus connectors enable operation with other test equipment such as the PXA/MXA/EXA signal analyzer, MXG and ESG vector signal generator, and N5102A digital signal interface module
I+, I–	Analog I/Q modulation from the internal baseband generator 2 Vpp; 50 Ω [male SMB] Damage level: < –15 V and > 15 V
Q+, Q-	Analog I/Q modulation from the internal baseband generator 2 Vpp; 50 Ω [male SMB] Damage level: < –15 V and > 15 V

Additional Resources

Literature

Agilent N5106A PXB Baseband Generator and Channel Emulator, Photo Card, 5989-8969EN

Agilent N5106A PXB Baseband Generator and Channel Emulator, Configuration Guide, 5989-8972EN

MIMO Channel Modeling and Emulation Test Challenges, Application Note, 5989-8973EN

Ten Things You Should Know About MIMO SM (Spatial Multiplexing), Poster, 5989-9618EN

GPS Receiver Testing, Application Note, 5990-4943EN

Agilent CMMB Conformance Testing Using the PXB with N7623B Signal Studio for Digital Video, Application Note, 5990-4978EN

Web

For more information or to view product literature online, please visit: www.agilent.com/find/pxb www.agilent.com/find/PXBconfig www.agilent.com/find/signalstudio www.agilent.com/find/mxg www.agilent.com/find/esg www.agilent.com/find/pxa www.agilent.com/find/pxa www.agilent.com/find/mxa

www.agilent.com/find/emailupdates Get the latest information on the products and applications you select.

www.lxistandard.org

LXI is the LAN-based successor to GPIB, providing faster, more efficient connectivity. Agilent is a founding member of the LXI consortium.

Agilent Channel Partners

www.agilent.com/find/channelpartners

Get the best of both worlds: Agilent's measurement expertise and product breadth, combined with channel partner convenience.

"WIMAX", "Mobile WIMAX" and "WIMAX Forum" are trademarks of the WIMAX Forum.

Microsoft and Windows are U.S. registered trademarks of Microsoft Corporation.

cdma2000 is a US registered certification mark of the Telecommunications Industry Association.

Agilent Advantage Services is committed to your success throughout your equipment's lifetime. We share measurement and service expertise to help you create the products that change our world. To keep you competitive, we continually invest in tools and processes that speed up calibration and repair, reduce your cost of ownership, and move us ahead of your development curve.

www.agilent.com/find/advantageservices

www.agilent.com/quality

www.agilent.com/find/PXB

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Americas

Canada	(877) 894 4414
Brazil	(11) 4197 3500
Mexico	01800 5064 800
United States	(800) 829 4444

Asia Pacific

Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
India	1 800 112 929
Japan	0120 (421) 345
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Other AP Countries	(65) 375 8100

Europe & Middle East

Europo e milaun	5 Euot
Belgium	32 (0) 2 404 93 40
Denmark	45 70 13 15 15
Finland	358 (0) 10 855 2100
France	0825 010 700*
	*0.125 €/minute
Germany	49 (0) 7031 464 6333
Ireland	1890 924 204
lsrael	972-3-9288-504/544
Italy	39 02 92 60 8484
Netherlands	31 (0) 20 547 2111
Spain	34 (91) 631 3300
Sweden	0200-88 22 55
United Kingdom	44 (0) 118 9276201

For other unlisted Countries: www.agilent.com/find/contactus Revised: October 14, 2010

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2011 Printed in USA, January 20, 2011 5989-8971EN

